Addressing distributed denial-of-service (DDoS) attacks designed to knock Web services offline and security concerns introduced by the so-called “Internet of Things” (IoT) should be top cybersecurity priorities for the 45th President of the United States, according to a newly released blue-ribbon report commissioned by President Obama.

commish“The private sector and the Administration should collaborate on a roadmap for improving the security of digital networks, in particular by achieving robustness against denial-of-service, spoofing, and other attacks on users and the nation’s network infrastructure,” reads the first and foremost cybersecurity recommendation for President-elect Donald Trump. “The urgency of the situation demands that the next Administration move forward promptly on our recommendations, working closely with Congress and the private sector.”

The 12-person, non-partisan commission produced a 90-page report (PDF) and recommended as their very first action item that the incoming President “should direct senior federal executives to launch a private–public initiative, including provisions to undertake, monitor, track, and report on measurable progress in enabling agile, coordinated responses and mitigation of attacks on the users and the nation’s network infrastructure.”

The panel said this effort should build on previous initiatives, such as a 2011 program by the U.S. Department of Commerce called the Industry Botnet Group.

“Specifically, this effort would identify the actions that can be taken by organizations responsible for the Internet and communications ecosystem to define, identify, report, reduce, and respond to attacks on users and the nation’s network infrastructure,” the report urged. “This initiative should include regular reporting on the actions that these organizations are already taking and any changes in technology, law, regulation, policy, financial reimbursement, or other incentives that may be necessary to support further action—while ensuring that no participating entity obstructs lawful content, applications, services, or nonharmful devices, subject to reasonable network management.”

The report spans some six major imperatives, including 16 recommendations and 63 associated action items. The second major imperative focuses on IoT security concerns, and urges the federal government and private industry to embark upon a number of initiatives to “rapidly and purposefully to improve the security of the Internet of Things.”

“The Department of Justice should lead an interagency study with the Departments of Commerce and Homeland Security and work with the Federal Trade Commission, the Consumer Product Safety Commission, and interested private sector parties to assess the current state of the law with regard to liability for harm caused by faulty IoT devices and provide recommendations within 180 days,” the panel recommended. “To the extent that the law does not provide appropriate incentives for companies to design security into their products, and does not offer protections for those that do, the President should draw on these recommendations to present Congress with a legislative proposal to address identified gaps, as well as explore actions that could be accomplished through executive order.”

Meanwhile, Morning Consult reports that U.S. Federal Communications Commission Chairman Tom Wheeler has laid out an unexpected roadmap through which the agency could regulate the security of IoT devices. The proposed certification process was laid out in a response to a letter sent by Sen. Mark Warner (D-Va.) shortly after the IoT-based attacks in October that targeted Internet infrastructure company Dyn and knocked offline a number of the Web’s top destinations for the better part of a day.

Morning Consult’s Brendan Bordelon notes that while Wheeler is set to step down as chairman on Jan. 20, “the new framework could be used to support legislation enhancing the FCC’s ability to regulate IoT devices.”

ANALYSIS

It’s nice that this presidential commission placed a special emphasis on IoT and denial-of-service attacks, as these two threats alone are clear and present dangers to the stability of e-commerce and free expression online. However, this report overall reads very much like other blue-ribbon commission reports of years past: The recommendations eschew new requirements in favor of the usual calls for best practices, voluntary guidelines, increasing industry-government information sharing, public/private partnerships, and public awareness campaigns.

One recommendation I would like to have seen in this report is a call for federal legislation that requires U.S.-based hosting providers to block spoofed traffic from leaving their networks.

As I noted in a November 2015 story, The Lingering Mess from Default Insecurity, one major contributor to the massive spike in denial-of-service attacks over the past few years is that far too many ISPs and hosting providers allow traffic to leave their networks that did not originate there. Using well-known attack techniques known as traffic amplification and reflection, an attacker can “reflect” his traffic from one or more third-party machines toward the intended target.

In this type of assault, the attacker sends a message to a third party, while spoofing the Internet address of the victim. When the third party replies to the message, the reply is sent to the victim — and the reply is much larger than the original message, thereby amplifying the size of the attack. According to the latest DDoS report from Akamai, more than half of all denial-of-service attacks in the third quarter of 2016 involved reflection and spoofing.

One basic step that many ISPs and hosting providers can but apparently are not taking to blunt these spoofing attacks involves a network security standard that was developed and released more than a dozen years ago. Known as BCP38, its use prevents abusable resources on an ISP’s network from being leveraged in denial-of-service. BCP38 is designed to filter such spoofed traffic, so that the reflected traffic from the third party never even traverses the network of an ISP that’s adopted the anti-spoofing measures.

However, there are non-trivial economic reasons that many ISPs fail to adopt this best practice. This blog post from the Internet Society does a good job of explaining why many ISPs decide not to implement BCP38. Ultimately, it comes down to cost and to a fear that adoption of this best practice will increase costs and prompt some customers to seek out providers that do not enforce this requirement. In some cases, U.S.-based hosting providers that allow spoofing/reflection have been sought out and recommended among miscreants involved in selling DDoS-for-hire services.

In its Q3 2016 State of the Internet report, Akamai notes that while Chinese ISPs occupy the top two sources of spoofed traffic, several large U.S.-based providers make a showing here as well:

Image: Akamai.

Image: Akamai.

It is true that requiring U.S. hosting providers to block spoofing would not solve the spoofing problem globally. But I believe it’s high time that the United States led by example in this arena, if only because we probably have the most to lose by continued inaction. According to Akamai, more than 21 percent of all denial-of-service attacks originate from the United States. And that number has increased from 17 percent a year ago, Akamai found. What’s more, the U.S. is the most frequent target of these attacks, according to DDoS stats released this year by Arbor Networks.

Source: krebsonsecurity

Internet infrastructure giant Akamai last week released a special State of the Internet report. Normally, the quarterly accounting of noteworthy changes in distributed denial-of-service (DDoS) attacks doesn’t delve into attacks on specific customers. But this latest Akamai report makes an exception in describing in great detail the record-sized attack against KrebsOnSecurity.com in September, the largest such assault it has ever mitigated.

“The attacks made international headlines and were also covered in depth by Brian Krebs himself,” Akamai said in its report, explaining one reason for the exception. “The same data we’ve shared here was made available to Krebs for his own reporting and we received permission to name him and his site in this report. Brian Krebs is a security blogger and reporter who does in-depth research and analysis of cybercrime throughout the world, with a recent emphasis on DDoS. His reporting exposed a stressor site called vDOS and the security firm BackConnect Inc., which made him the target of a series of large DDoS attacks starting September 15, 2016.”

A visual depiction of the increasing size and frequency of DDoS attacks against KrebsOnSecurity.com, between 2012 and 2016. Source: Akamai.

A visual depiction of the increasing size and frequency of DDoS attacks against KrebsOnSecurity.com, between 2012 and 2016. Source: Akamai.

Akamai said so-called “booter” or “stresser” DDoS-for-hire services that sell attacks capable of knocking Web sites offline continue to account for a large portion of the attack traffic in mega attacks. According to Akamai, most of the traffic from those mega attacks in Q3 2016 were thanks to Mirai — the now open-source malware family that was used to coordinate the attack on this site in September and a separate assault against infrastructure provider Dyn in October.

Akamai said the attack on Sept. 20 was launched by just 24,000 systems infected with Mirai, mostly hacked Internet of Things (IoT) devices such as digital video recorders and security cameras.

“The first quarter of 2016 marked a high point in the number of attacks peaking at more than 100 Gbps,” Akamai stated in its report. “This trend was matched in Q3 2016, with another 19 mega attacks. It’s interesting that while the overall number of attacks fell by 8% quarter over quarter, the number of large attacks, as well as the size of the biggest attacks, grew significantly.”

As detailed here in several previous posts, KrebsOnSecurity.com was a pro-bono customer of Akamai, beginning in August 2012 with Prolexic before Akamai acquired them. Akamai mentions this as well in explaining its decision to terminate our pro-bono arrangement. KrebsOnSecurity is now behind Google‘s Project Shield, a free program run by Google to help protect journalists and dissidents from online censorship.

“Almost as soon as the site was on the Prolexic network, it was hit by a trio of attacks based on the Dirt Jumper DDoS tookit,” Akamai wrote of this site. “Those attacks marked the start of hundreds of attacks that were mitigated on the routed platform.”

In total, Akamai found, this site received 269 attacks in the little more than four years it was on the Prolexic/Akamai network.

“During that time, there were a dozen mega attacks peaking at over 100 Gbps,” the company wrote. “The first happened in December 2013, the second in February 2014, and the third in August 2015. In 2016, the size of attacks accelerated dramatically, with four mega attacks happening between March and August, while five attacks occurred in September, ranging from 123 to 623 Gbps. An observant reader can probably correlate clumps of attacks to specific stories covered by Krebs. Reporting on the dark side of cybersecurity draws attention from people and organizations who are not afraid of using DDoS attacks to silence their detractors.”

In case any trenchant observant readers wish to attempt that, I’ve published a spreadsheet here (in .CSV format) which lists the date, duration, size and type of attack used in DDoS campaigns against KrebsOnSecurity.com over the past four years. Although 269 attacks over four years works out to an average of just one attack roughly every five days, both the frequency and intensity of these attacks have increased substantially over the past four years as illustrated by the graphic above.

“The magnitude of the attacks seen during the final week were significantly larger than the majority of attacks Akamai sees on a regular basis,” Akamai reports. “In fact, while the attack on September 20 was the largest attack ever mitigated by Akamai, the attack on September 22 would have qualified for the record at any other time, peaking at 555 Gbps.”

Akamai found that the 3rd quarter of 2016 marks a full year with China as the top source country for DDoS attacks, with just under 30 percent of attack traffic in Q3 2016. The company notes that this metric doesn’t count UDP-based attacks – such as amplification and reflection attacks — due to the ease with which the sources of the attacks can be spoofed and could create significant distortion of the data.

“More importantly, the proportion of traffic from China has been reduced by 56%, which had a significant effect on the overall attack count and led to the 8% drop in attacks seen this quarter,” Akamai reported. The U.S., U.K., France, and Brazil round out the remaining top five source countries.”

Top sources of DDoS attacks. Image: Akamai.

Top sources of DDoS attacks. Image: Akamai.

A copy of Akamai’s Q3 2016 State of the Internet report is available here.

Source: krebsonsecurity

KrebsOnSecurity received many a missive over the past 24 hours from readers who wanted to know why I’d not written about widespread media reports that Mirai — a malware strain made from hacked “Internet of Things” (IoT) devices such as poorly secured routers and IP cameras — was used to knock the entire country of Liberia offline. The trouble is, as far as I can tell no such nationwide outage actually occurred.

First, a quick recap on Mirai: This blog was taken offline in September following a record 620 Gpbs attack launched by a Mirai botnet. The source code for Mirai was leaked online at the end of September. Since then, the code has been forked several times, resulting in the emergence of several large Mirai-based botnets. In late October, many of the Internet’s top destinations went offline for the better part of a day when Mirai was used to attack Internet infrastructure firm Dyn.

Enter Kevin Beaumont, a security architect from Liverpool, England who on Thursday published a piece on Medium.com about an attack by Mirai against Liberia. Beaumont had been researching the output of an automated Twitter account set up by security researchers to monitor attacks from these various Mirai botnets. That Twitter account, @MiraiAttacks, burps out a tweet with each new Mirai attack, listing the targeted Internet address, the attack type, and the observed duration of the attack.

Beamont’s story noted that a botnet based on Mirai was seen attacking the telecommunications infrastructure in the West African nation of Liberia. Citing anonymous sources, Beaumont said transit providers confirmed an attack of more than 500 Gpbs targeting Liberia’s lone underseas large-transit Internet cable, which Beaumont said “provides a single point of failure for internet access.”

“From monitoring we can see websites hosted in country going offline during the attacks,” Beaumont wrote. “Additionally, a source in country at a Telco has confirmed to a journalist they are seeing intermittent internet connectivity, at times which directly match the attack. The attacks are extremely worrying because they suggest a Mirai operator who has enough capacity to seriously impact systems in a nation state.”

Not long after Beamont’s story went live, a piece at The Hacker News breathlessly announced that hackers using Mirai had succeeded in knocking Liberia off the Internet. The Hacker News piece includes nifty graphics and images of Liberia’s underseas Internet cables. Soon after, ZDNet picked up the outage angle, as did the BBC and The Guardian and a host of other news outlets.

A graphic The Hacker News used to explain Liberia's susceptibility to a DDoS attack.

A graphic The Hacker News used to explain Liberia’s susceptibility to a DDoS attack.

The only problem that I can see with these stories is that there does not appear to have been anything close to a country-wide outage as a result of this Mirai attack.

Daniel Brewer, general manager for the Cable Consortium of Liberia, confirmed that his organization has fielded inquiries from news outlets and other interest groups following multiple media reports of a nationwide outage. But he could not point to the reason.

“Both our ACE submarine cable monitoring systems and servers hosted (locally) in LIXP (Liberia Internet Exchange Point) show no downtime in the last 3 weeks,” Brewer said. “While it is likely that a local operator might have experienced a brief outage, we have no knowledge of a national Internet outage and there are no data to substantial that.”

Yes, multiple sources confirm that Mirai was used to launch an attack exceeding 500 Gbps against a mobile telecom provider in Liberia, but those sources also say the provider in question had a denial-of-service attack mitigation plan in place that kicked into action shortly after the attack began.

This was confirmed in a tweet on Thursday by Dyn. The company said in a separate tweet that routing in Liberia has been stable for days.

Akamai, a company with a global Internet presence and visibility, said it saw a dip in traffic levels from Liberia. Akamai tweeted a graphic Thursday evening that indicated traffic to Liberia was lower than normal as compared to traffic patterns from previous days this week. But there was nothing to indicate a nationwide outage, and the dip in traffic may just as well have to do with the fact that the first Thursday of November in Liberia is Thanksgiving, a public holiday there.

“Neither @dynresearch nor @akamai_soti have data supporting the assertion that Liberia suffered a national outage,” tweeted Dyn’s Doug Madory.

To recap: Did a Mirai botnet attack an infrastructure provider in Liberia? No question. Is the IoT problem bad enough that we have to worry about entire countries being knocked offline? Quite possibly. Was there an outage that knocked the country of Liberia offline this week? I have yet to see the evidence to support that claim.

Source: krebsonsecurity

A Chinese electronics firm pegged by experts as responsible for making many of the components leveraged in last week’s massive attack that disrupted Twitter and dozens of popular Web sites has vowed to recall some of its vulnerable products. Meanwhile, the Chinese government is threatening legal action against this publication and others for allegedly tarnishing the company’s brand.

iotstuf

Last week’s attack on online infrastructure provider Dyn was launched at least in part by Mirai, a now open-source malware strain that scans the Internet for routers, cameras, digital video recorders and other Internet of Things “IoT” devices protected only by the factory-default passwords. Once infected with Mirai, the IoT systems can be used to flood a target with so much junk Web traffic that the target site can no longer accommodate legitimate users or visitors.

In an interim report on the attack, Dyn said: “We can confirm, with the help of analysis from Flashpoint and Akamai, that one source of the traffic for the attacks were devices infected by the Mirai botnet. We observed 10s of millions of discrete IP addresses associated with the Mirai botnet that were part of the attack.”

As a result of that attack, one of the most-read stories on KrebsOnSecurity so far this year is “Who Makes the IoT Things Under Attack?“, in which I tried to match default passwords sought out by the Mirai malware with IoT hardware devices for sale on the commercial market today.

In a follow-up to that story, I interviewed researchers at Flashpoint who discovered that one of the default passwords sought by machines infected with Mirai — username: root and password: xc3511 — is embedded in a broad array of white-labeled DVR and IP camera electronics boards made by a Chinese company called XiongMai Technologies. These components are sold downstream to vendors who then use them in their own products.

The scary part about IoT products that include XiongMai’s various electronics components, Flashpoint found, was that while users could change the default credentials in the devices’ Web-based administration panel, the password is hardcoded into the device firmware and the tools needed to disable it aren’t present.

In a statement issued on social media Monday, XiongMai (referring to itself as “XM”) said it would be issuing a recall on millions of devices — mainly network cameras.

“Mirai is a huge disaster for the Internet of Things,” the company said in a separate statement emailed to journalists. “XM have to admit that our products also suffered from hacker’s break-in and illegal use.”

At the same time, the Chinese electronics firm said that in September 2015 it issued a firmware fix for vulnerable devices, and that XiongMai hardware shipped after that date should not by default be vulnerable.

“Since then, XM has set the device default Telnet off to avoid the hackers to connect,” the company said. “In other words, this problem is absent at the moment for our devices after Sep 2015, as Hacker cannot use the Telnet to access our devices.”

Regarding the default user name/password that ships with XM, “our devices are asking customers to change the default password when they first time to login,” the electronics maker wrote. “When customer power on the devices, the first step, is change the default password.”

I’m working with some researchers who are testing XM’s claims, and will post an update here if and when that research is available. In the meantime, the Chinese Ministry of Justice is threatening legal action against media outlets that it says are issuing “false statements” against the company.

Google’s translation of their statement reads, in part: “Organizations or individuals false statements, defame our goodwill behavior … through legal channels to pursue full legal responsibility for all violations of people, to pursue our legal rights are reserved.”

Xiongmail's electrical components that are white-labeled and embedded in countless IoT products sold under different brand names.

Xiongmail’s electrical components that are white-labeled and embedded in countless IoT products sold under different brand names.

The statement by the Chinese Ministry of Justice doesn’t name KrebsOnSecurity per se, but instead links to a Chinese media story referencing this site under the heading, “untrue reports link.”

Brian Karas, a business analyst with IPVM — a subscription-based news, testing and training site for the video surveillance industry — said that over the past five years China’s market share in the video surveillance industry has surged, due to the efforts of companies like XiongMai and Dahua to expand globally, and from the growth of government-controlled security company Hikvision.

Karas said the recent Mirai botnet attacks have created “extreme concerns about the impact of Chinese video surveillance products.” Nevertheless,  he said, the threats against those the company accuses of issuing false statements are more about saving face.

“We believe Xiongmai has issued this announcement as a PR effort within China, to help counter criticisms they are facing,” Karas wrote. “We do not believe that Xiongmai or the Ministry of Justice is seriously going to sue any Western companies as this is a typical tactic to save face.”

Source: krebsonsecurity

Criminals this morning massively attacked Dyn, a company that provides core Internet services for Twitter, SoundCloud, Spotify, Reddit and a host of other sites, causing outages and slowness for many of Dyn’s customers.

Twitter is experiencing problems, as seen through the social media platform Hootsuite.

Twitter is experiencing problems, as seen through the social media platform Hootsuite.

In a statement, Dyn said that this morning, October 21, Dyn received a global distributed denial of service (DDoS) attack on its DNS infrastructure on the east coast starting at around 7:10 a.m. ET (11:10 UTC).

“DNS traffic resolved from east coast name server locations are experiencing a service interruption during this time. Updates will be posted as information becomes available,” the company wrote.

DYN encouraged customers with concerns to check the company’s status page for updates and to reach out to its technical support team.

A DDoS is when crooks use a large number of hacked or ill-configured systems to flood a target site with so much junk traffic that it can no longer serve legitimate visitors.

DNS refers to Domain Name System services. DNS is an essential component of all Web sites, responsible for translating human-friendly Web site names like “example.com” into numeric, machine-readable Internet addresses. Anytime you send an e-mail or browse a Web site, your machine is sending a DNS look-up request to your Internet service provider to help route the traffic.

ANALYSIS

The attack on DYN comes just hours after DYN researcher Doug Madory presented a talk on DDoS attacks in Dallas, Texas at a meeting of the North American Network Operators Group (NANOG). Madory’s talk — available here on Youtube.com — delved deeper into research that he and I teamed up on to produce the data behind the story DDoS Mitigation Firm Has History of Hijacks.

That story (as well as one published earlier this week, Spreading the DDoS Disease and Selling the Cure) examined the sometimes blurry lines between certain DDoS mitigation firms and the cybercriminals apparently involved in launching some of the largest DDoS attacks the Internet has ever seen. Indeed, the record 620 Gbps DDoS against KrebsOnSecurity.com came just hours after I published the story on which Madory and I collaborated.

The record-sized attack that hit my site last month was quickly superseded by a DDoS against OVH, a French hosting firm that reported being targeted by a DDoS that was roughly twice the size of the assault on KrebsOnSecurity. As I noted in The Democratization of Censorship — the first story published after bringing my site back up under the protection of Google’s Project Shield — DDoS mitigation firms simply did not count on the size of these attacks increasing so quickly overnight, and are now scrambling to secure far greater capacity to handle much larger attacks concurrently.

The size of these DDoS attacks has increased so much lately thanks largely to the broad availability of tools for compromising and leveraging the collective firepower of so-called Internet of Things devices — poorly secured Internet-based security cameras, digital video recorders (DVRs) and Internet routers. Last month, a hacker by the name of Anna_Senpai released the source code for Mirai, a crime machine that enslaves IoT devices for use in large DDoS attacks. The 620 Gbps attack that hit my site last month was launched by a botnet built on Mirai, for example.

Interestingly, someone is now targeting infrastructure providers with extortion attacks and invoking the name Anna_senpai. According to a discussion thread started Wednesday on Web Hosting Talk, criminals are now invoking the Mirai author’s nickname in a bid to extort Bitcoins from targeted hosting providers.

“If you will not pay in time, DDoS attack will start, your web-services will
go down permanently. After that, price to stop will be increased to 5 BTC
with further increment of 5 BTC for every day of attack.

NOTE, i?m not joking.

My attack are extremely powerful now – now average 700-800Gbps, sometimes over 1 Tbps per second. It will pass any remote protections, no current protection systems can help.”

Let me be clear: I have no data to indicate that the attack on Dyn is related to extortion, to Mirai or to any of the companies or individuals Madory referenced in his talk this week in Dallas. But Dyn is known for publishing detailed writeups on outages at other major Internet service providers. Here’s hoping the company does not deviate from that practice and soon publishes a postmortem on its own attack.

Update, 3:50 p.m. ET: Security firm Flashpoint is now reporting that they have seen indications that a Mirai-based botnet is indeed involved in the attack on Dyn today. Separately, I have heard from a trusted source who’s been tracking this activity and saw chatter in the cybercrime underground yesterday discussing a plan to attack Dyn.

Update, 10:22 a.m. ET: Dyn’s status page reports that all services are back to normal as of 13:20 UTC (9:20 a.m. ET). Fixed the link to Doug Madory’s talk on Youtube, to remove the URL shortener (which isn’t working because of this attack).

Update, 1:01 p.m. ET: Looks like the attacks on Dyn have resumed and this event is ongoing. This, from the Dyn status page:

This DDoS attack may also be impacting Dyn Managed DNS advanced services with possible delays in monitoring. Our Engineers are continuing to work on mitigating this issue.
Oct 21, 16:48 UTC
As of 15:52 UTC, we have begun monitoring and mitigating a DDoS attack against our Dyn Managed DNS infrastructure. Our Engineers are continuing to work on mitigating this issue.
Oct 21, 16:06 UTC

Source: krebsonsecurity

John Gilmore, an American entrepreneur and civil libertarian, once famously quipped that “the Internet interprets censorship as damage and routes around it.” This notion undoubtedly rings true for those who see national governments as the principal threats to free speech.

However, events of the past week have convinced me that one of the fastest-growing censorship threats on the Internet today comes not from nation-states, but from super-empowered individuals who have been quietly building extremely potent cyber weapons with transnational reach.

underwater

More than 20 years after Gilmore first coined that turn of phrase, his most notable quotable has effectively been inverted — “Censorship can in fact route around the Internet.” The Internet can’t route around censorship when the censorship is all-pervasive and armed with, for all practical purposes, near-infinite reach and capacity. I call this rather unwelcome and hostile development the “The Democratization of Censorship.”

Allow me to explain how I arrived at this unsettling conclusion. As many of you know, my site was taken offline for the better part of this week. The outage came in the wake of a historically large distributed denial-of-service (DDoS) attack which hurled so much junk traffic at Krebsonsecurity.com that my DDoS protection provider Akamai chose to unmoor my site from its protective harbor.

Let me be clear: I do not fault Akamai for their decision. I was a pro bono customer from the start, and Akamai and its sister company Prolexic have stood by me through countless attacks over the past four years. It just so happened that this last siege was nearly twice the size of the next-largest attack they had ever seen before. Once it became evident that the assault was beginning to cause problems for the company’s paying customers, they explained that the choice to let my site go was a business decision, pure and simple.

Nevertheless, Akamai rather abruptly informed me I had until 6 p.m. that very same day — roughly two hours later — to make arrangements for migrating off their network. My main concern at the time was making sure my hosting provider wasn’t going to bear the brunt of the attack when the shields fell. To ensure that absolutely would not happen, I asked Akamai to redirect my site to 127.0.0.1 — effectively relegating all traffic destined for KrebsOnSecurity.com into a giant black hole.

Today, I am happy to report that the site is back up — this time under Project Shield, a free program run by Google to help protect journalists from online censorship. And make no mistake, DDoS attacks — particularly those the size of the assault that hit my site this week — are uniquely effective weapons for stomping on free speech, for reasons I’ll explore in this post.

Google's Project Shield is now protecting KrebsOnSecurity.com

Google’s Project Shield is now protecting KrebsOnSecurity.com

Why do I speak of DDoS attacks as a form of censorship? Quite simply because the economics of mitigating large-scale DDoS attacks do not bode well for protecting the individual user, to say nothing of independent journalists.

In an interview with The Boston Globe, Akamai executives said the attack — if sustained — likely would have cost the company millions of dollars. In the hours and days following my site going offline, I spoke with multiple DDoS mitigation firms. One offered to host KrebsOnSecurity for two weeks at no charge, but after that they said the same kind of protection I had under Akamai would cost between $150,000 and $200,000 per year.

Ask yourself how many independent journalists could possibly afford that kind of protection money? A number of other providers offered to help, but it was clear that they did not have the muscle to be able to withstand such massive attacks.

I’ve been toying with the idea of forming a 501(c)3 non-profit organization — ‘The Center for the Defense of Internet Journalism’, if you will — to assist Internet journalists with obtaining the kind of protection they may need when they become the targets of attacks like the one that hit my site.  Maybe a Kickstarter campaign, along with donations from well-known charitable organizations, could get the ball rolling.  It’s food for thought.

CALIBRATING THE CANNONS

Earlier this month, noted cryptologist and security blogger Bruce Schneier penned an unusually alarmist column titled, “Someone Is Learning How to Take Down the Internet.” Citing unnamed sources, Schneier warned that there was strong evidence indicating that nation-state actors were actively and aggressively probing the Internet for weak spots that could allow them to bring the entire Web to a virtual standstill.

“Someone is extensively testing the core defensive capabilities of the companies that provide critical Internet services,” Schneier wrote. “Who would do this? It doesn’t seem like something an activist, criminal, or researcher would do. Profiling core infrastructure is common practice in espionage and intelligence gathering. It’s not normal for companies to do that.”

Schneier continued:

“Furthermore, the size and scale of these probes — and especially their persistence — points to state actors. It feels like a nation’s military cyber command trying to calibrate its weaponry in the case of cyberwar. It reminds me of the US’s Cold War program of flying high-altitude planes over the Soviet Union to force their air-defense systems to turn on, to map their capabilities.”

Whether Schneier’s sources were accurate in their assessment of the actors referenced in his blog post is unknown. But as my friend and mentor Roland Dobbins at Arbor Networks eloquently put it, “When it comes to DDoS attacks, nation-states are just another player.”

“Today’s reality is that DDoS attacks have become the Great Equalizer between private actors & nation-states,” Dobbins quipped.

UM…YOUR RERUNS OF ‘SEINFELD’ JUST ATTACKED ME

What exactly was it that generated the record-smashing DDoS of 620 Gbps against my site this week? Was it a space-based weapon of mass disruption built and tested by a rogue nation-state, or an arch villain like SPECTRE from the James Bond series of novels and films? If only the enemy here was that black-and-white.

No, as I reported in the last blog post before my site was unplugged, the enemy in this case was far less sexy. There is every indication that this attack was launched with the help of a botnet that has enslaved a large number of hacked so-called “Internet of Things,” (IoT) devices — mainly routers, IP cameras and digital video recorders (DVRs) that are exposed to the Internet and protected with weak or hard-coded passwords. Most of these devices are available for sale on retail store shelves for less than $100, or — in the case of routers — are shipped by ISPs to their customers.

Some readers on Twitter have asked why the attackers would have “burned” so many compromised systems with such an overwhelming force against my little site. After all, they reasoned, the attackers showed their hand in this assault, exposing the Internet addresses of a huge number of compromised devices that might otherwise be used for actual money-making cybercriminal activities, such as hosting malware or relaying spam. Surely, network providers would take that list of hacked devices and begin blocking them from launching attacks going forward, the thinking goes.

As KrebsOnSecurity reader Rob Wright commented on Twitter, “the DDoS attack on @briankrebs feels like testing the Death Star on the Millennium Falcon instead of Alderaan.” I replied that this maybe wasn’t the most apt analogy. The reality is that there are currently millions — if not tens of millions — of insecure or poorly secured IoT devices that are ripe for being enlisted in these attacks at any given time. And we’re adding millions more each year.

I suggested to Mr. Wright perhaps a better comparison was that ne’er-do-wells now have a virtually limitless supply of Stormtrooper clones that can be conscripted into an attack at a moment’s notice.

A scene from the 1978 movie Star Wars, which the Death Star tests its firepower by blowing up a planet.

A scene from the 1977 movie Star Wars, in which the Death Star tests its firepower by blowing up a planet.

SHAMING THE SPOOFERS

The problem of DDoS conscripts goes well beyond the millions of IoT devices that are shipped insecure by default: Countless hosting providers and ISPs do nothing to prevent devices on their networks from being used by miscreants to “spoof” the source of DDoS attacks.

As I noted in a November 2015 story, The Lingering Mess from Default Insecurity, one basic step that many ISPs can but are not taking to blunt these attacks involves a network security standard that was developed and released more than a dozen years ago. Known as BCP38, its use prevents insecure resources on an ISPs network (hacked servers, computers, routers, DVRs, etc.) from being leveraged in such powerful denial-of-service attacks.

Using a technique called traffic amplification and reflection, the attacker can reflect his traffic from one or more third-party machines toward the intended target. In this type of assault, the attacker sends a message to a third party, while spoofing the Internet address of the victim. When the third party replies to the message, the reply is sent to the victim — and the reply is much larger than the original message, thereby amplifying the size of the attack.

BCP38 is designed to filter such spoofed traffic, so that it never even traverses the network of an ISP that’s adopted the anti-spoofing measures. However, there are non-trivial economic reasons that many ISPs fail to adopt this best practice. This blog post from the Internet Society does a good job of explaining why many ISPs ultimately decide not to implement BCP38.

Fortunately, there are efforts afoot to gather information about which networks and ISPs have neglected to filter out spoofed traffic leaving their networks. The idea is that by “naming and shaming” the providers who aren’t doing said filtering, the Internet community might pressure some of these actors into doing the right thing (or perhaps even offer preferential treatment to those providers who do conduct this basic network hygiene).

A research experiment by the Center for Applied Internet Data Analysis (CAIDA) called the “Spoofer Project” is slowly collecting this data, but it relies on users voluntarily running CAIDA’s software client to gather that intel. Unfortunately, a huge percentage of the networks that allow spoofing are hosting providers that offer extremely low-cost, virtual private servers (VPS). And these companies will never voluntarily run CAIDA’s spoof-testing tools.

CAIDA's Spoofer Project page.

CAIDA’s Spoofer Project page.

As a result, the biggest offenders will continue to fly under the radar of public attention unless and until more pressure is applied by hardware and software makers, as well as ISPs that are doing the right thing.

How might we gain a more complete picture of which network providers aren’t blocking spoofed traffic — without relying solely on voluntary reporting? That would likely require a concerted effort by a coalition of major hardware makers, operating system manufacturers and cloud providers, including Amazon, Apple, Google, Microsoft and entities which maintain the major Web server products (Apache, Nginx, e.g.), as well as the major Linux and Unix operating systems.

The coalition could decide that they will unilaterally build such instrumentation into their products. At that point, it would become difficult for hosting providers or their myriad resellers to hide the fact that they’re allowing systems on their networks to be leveraged in large-scale DDoS attacks.

To address the threat from the mass-proliferation of hardware devices such as Internet routers, DVRs and IP cameras that ship with default-insecure settings, we probably need an industry security association, with published standards that all members adhere to and are audited against periodically.

The wholesalers and retailers of these devices might then be encouraged to shift their focus toward buying and promoting connected devices which have this industry security association seal of approval. Consumers also would need to be educated to look for that seal of approval. Something like Underwriters Laboratories (UL), but for the Internet, perhaps.

THE BLEAK VS. THE BRIGHT FUTURE

As much as I believe such efforts could help dramatically limit the firepower available to today’s attackers, I’m not holding my breath that such a coalition will materialize anytime soon. But it’s probably worth mentioning that there are several precedents for this type of cross-industry collaboration to fight global cyber threats.

In 2008, the United States Computer Emergency Readiness Team (CERT) announced that researcher Dan Kaminsky had discovered a fundamental flaw in DNS that could allow anyone to intercept and manipulate most Internet-based communications, including email and e-commerce applications. A diverse community of software and hardware makers came together to fix the vulnerability and to coordinate the disclosure and patching of the design flaw.

deathtoddosIn 2009, Microsoft heralded the formation of an industry group to collaboratively counter Conficker, a malware threat that infected tens of millions of Windows PCs and held the threat of allowing cybercriminals to amass a stupendous army of botted systems virtually overnight. A group of software and security firms, dubbed the Conficker Cabal, hashed out and executed a plan for corralling infected systems and halting the spread of Conficker.

In 2011, a diverse group of industry players and law enforcement organizations came together to eradicate the threat from the DNS Changer Trojan, a malware strain that infected millions of Microsoft Windows systems and enslaved them in a botnet that was used for large-scale cyber fraud schemes.

These examples provide useful templates for a solution to the DDoS problem going forward. What appears to be missing is any sense of urgency to address the DDoS threat on a coordinated, global scale.

That’s probably because at least for now, the criminals at the helm of these huge DDoS crime machines are content to use them to launch petty yet costly attacks against targets that suit their interests or whims.

For example, the massive 620 Gbps attack that hit my site this week was an apparent retaliation for a story I wrote exposing two Israeli men who were arrested shortly after that story ran for allegedly operating vDOS — until recently the most popular DDoS-for-hire network. The traffic hurled at my site in that massive attack included the text string “freeapplej4ck,” a reference to the hacker nickname used by one of vDOS’s alleged co-founders.

Most of the time, ne’er-do-wells like Applej4ck and others are content to use their huge DDoS armies to attack gaming sites and services. But the crooks maintaining these large crime machines haven’t just been targeting gaming sites. OVH, a major Web hosting provider based in France, said in a post on Twitter this week that it was recently the victim of an even more massive attack than hit my site. According to a Tweet from OVH founder Octave Klaba, that attack was launched by a botnet consisting of more than 145,000 compromised IP cameras and DVRs.

I don’t know what it will take to wake the larger Internet community out of its slumber to address this growing threat to free speech and ecommerce. My guess is it will take an attack that endangers human lives, shuts down critical national infrastructure systems, or disrupts national elections.

But what we’re allowing by our inaction is for individual actors to build the instrumentality of tyranny. And to be clear, these weapons can be wielded by anyone — with any motivation — who’s willing to expend a modicum of time and effort to learn the most basic principles of its operation.

The sad truth these days is that it’s a lot easier to censor the digital media on the Internet than it is to censor printed books and newspapers in the physical world. On the Internet, anyone with an axe to grind and the willingness to learn a bit about the technology can become an instant, self-appointed global censor.

I sincerely hope we can address this problem before it’s too late. And I’m deeply grateful for the overwhelming outpouring of support and solidarity that I’ve seen and heard from so many readers over the past few days. Thank you.

Source: krebsonsecurity

On Tuesday evening, KrebsOnSecurity.com was the target of an extremely large and unusual distributed denial-of-service (DDoS) attack designed to knock the site offline. The attack did not succeed thanks to the hard work of the engineers at Akamai, the company that protects my site from such digital sieges. But according to Akamai, it was nearly double the size of the largest attack they’d seen previously, and was among the biggest assaults the Internet has ever witnessed.
iotstuf

The attack began around 8 p.m. ET on Sept. 20, and initial reports put it at approximately 665 Gigabits of traffic per second. Additional analysis on the attack traffic suggests the assault was closer to 620 Gbps in size, but in any case this is many orders of magnitude more traffic than is typically needed to knock most sites offline.

Martin McKeay, Akamai’s senior security advocate, said the largest attack the company had seen previously clocked in earlier this year at 363 Gbps. But he said there was a major difference between last night’s DDoS and the previous record holder: The 363 Gpbs attack is thought to have been generated by a botnet of compromised systems using well-known techniques allowing them to “amplify” a relatively small attack into a much larger one.

In contrast, the huge assault this week on my site appears to have been launched almost exclusively by a very large botnet of hacked devices.

The largest DDoS attacks on record tend to be the result of a tried-and-true method known as a DNS reflection attack. In such assaults, the perpetrators are able to leverage unmanaged DNS servers on the Web to create huge traffic floods.

Ideally, DNS servers only provide services to machines within a trusted domain. But DNS reflection attacks rely on consumer and business routers and other devices equipped with DNS servers that are (mis)configured to accept queries from anywhere on the Web. Attackers can send spoofed DNS queries to these so-called “open recursive” DNS servers, forging the request so that it appears to come from the target’s network. That way, when the DNS servers respond, they reply to the spoofed (target) address.

The bad guys also can amplify a reflective attack by crafting DNS queries so that the responses are much bigger than the requests. They do this by taking advantage of an extension to the DNS protocol that enables large DNS messages. For example, an attacker could compose a DNS request of less than 100 bytes, prompting a response that is 60-70 times as large. This “amplification” effect is especially pronounced if the perpetrators query dozens of DNS servers with these spoofed requests simultaneously.

But according to Akamai, none of the attack methods employed in Tuesday night’s assault on KrebsOnSecurity relied on amplification or reflection. Rather, many were garbage Web attack methods that require a legitimate connection between the attacking host and the target, including SYN, GET and POST floods.

That is, with the exception of one attack method: Preliminary analysis of the attack traffic suggests that perhaps the biggest chunk of the attack came in the form of traffic designed to look like it was generic routing encapsulation (GRE) data packets, a communication protocol used to establish a direct, point-to-point connection between network nodes. GRE lets two peers share data they wouldn’t be able to share over the public network itself.

“Seeing that much attack coming from GRE is really unusual,” Akamai’s McKeay said. “We’ve only started seeing that recently, but seeing it at this volume is very new.”

McKeay explained that the source of GRE traffic can’t be spoofed or faked the same way DDoS attackers can spoof DNS traffic. Nor can junk Web-based DDoS attacks like those mentioned above. That suggests the attackers behind this record assault launched it from quite a large collection of hacked systems — possibly hundreds of thousands of systems.

“Someone has a botnet with capabilities we haven’t seen before,” McKeay said. “We looked at the traffic coming from the attacking systems, and they weren’t just from one region of the world or from a small subset of networks — they were everywhere.”

There are some indications that this attack was launched with the help of a botnet that has enslaved a large number of hacked so-called “Internet of Things,” (IoT) devices — routers, IP cameras and digital video recorders (DVRs) that are exposed to the Internet and protected with weak or hard-coded passwords.

As noted in a recent report from Flashpoint and Level 3 Threat Research Labs, the threat from IoT-based botnets is powered by malware that goes by many names, including “Lizkebab,” “BASHLITE,” “Torlus” and “gafgyt.” According to that report, the source code for this malware was leaked in early 2015 and has been spun off into more than a dozen variants.

“Each botnet spreads to new hosts by scanning for vulnerable devices in order to install the malware,” the report notes. “Two primary models for scanning exist. The first instructs bots to port scan for telnet servers and attempts to brute force the username and password to gain access to the device.”

Their analysis continues:

“The other model, which is becoming increasingly common, uses external scanners to find and harvest new bots, in some cases scanning from the [botnet control] servers themselves. The latter model adds a wide variety of infection methods, including brute forcing login credentials on SSH servers and exploiting known security weaknesses in other services.”

I’ll address some of the challenges of minimizing the threat from large-scale DDoS attacks in a future post. But for now it seems likely that we can expect such monster attacks to soon become the new norm.

Many readers have been asking whether this attack was in retaliation for my recent series on the takedown of the DDoS-for-hire service vDOS, which coincided with the arrests of two young men named in my original report as founders of the service.

I can’t say for sure, but it seems likely related: Some of the POST request attacks that came in last night as part of this 620 Gbps attack included the string “freeapplej4ck,” a reference to the nickname used by one of the vDOS co-owners.

Update Sept. 22, 8:33 a.m. ET: Corrected the maximum previous DDoS seen by Akamai. It was 363, not 336 as stated earlier.

Source: krebsonsecurity

Last week, KrebsOnSecurity detailed how BackConnect Inc. — a company that defends victims against large-scale distributed denial-of-service (DDoS) attacks — admitted to hijacking hundreds of Internet addresses from a European Internet service provider in order to glean information about attackers who were targeting BackConnect. According to an exhaustive analysis of historic Internet records, BackConnect appears to have a history of such “hacking back” activity.

On Sept. 8, 2016, KrebsOnSecurity exposed the inner workings of vDOS, a DDoS-for-hire or “booter” service whose tens of thousands of paying customers used the service to launch attacks against hundreds of thousands of targets over the service’s four-year history in business.

vDOS as it existed on Sept. 8, 2016.

vDOS as it existed on Sept. 8, 2016.

Within hours of that story running, the two alleged owners — 18-year-old Israeli men identified in the original report — were arrested in Israel in connection with an FBI investigation into the shady business, which earned well north of $600,000 for the two men.

In my follow-up report on their arrests, I noted that vDOS itself had gone offline, and that automated Twitter feeds which report on large-scale changes to the global Internet routing tables observed that vDOS’s provider — a Bulgarian host named Verdina[dot]net — had been briefly relieved of control over 255 Internet addresses (including those assigned to vDOS) as the direct result of an unusual counterattack by BackConnect.

Asked about the reason for the counterattack, BackConnect CEO Bryant Townsend confirmed to this author that it had executed what’s known as a “BGP hijack.” In short, the company had fraudulently “announced” to the rest of the world’s Internet service providers (ISPs) that it was the rightful owner of the range of those 255 Internet addresses at Verdina occupied by vDOS.

In a post on NANOG Sept. 13, BackConnect’s Townsend said his company took the extreme measure after coming under a sustained DDoS attack thought to have been launched by a botnet controlled by vDOS. Townsend explained that the hijack allowed his firm to “collect intelligence on the actors behind the botnet as well as identify the attack servers used by the booter service.”

Short for Border Gateway Protocol, BGP is a mechanism by which ISPs of the world share information about which providers are responsible for routing Internet traffic to specific addresses. However, like most components built into the modern Internet, BGP was never designed with security in mind, which leaves it vulnerable to exploitation by rogue actors.

BackConnect’s BGP hijack of Verdina caused quite an uproar among many Internet technologists who discuss such matters at the mailing list of the North American Network Operators Group (NANOG).

BGP hijacks are hardly unprecedented, but when they are non-consensual they are either done accidentally or are the work of cyber criminals such as spammers looking to hijack address space for use in blasting out junk email. If BackConnect’s hijacking of Verdina was an example of a DDoS mitigation firm “hacking back,” what would discourage others from doing the same, they wondered?

“Once we let providers cross the line from legal to illegal actions, we’re no better than the crooks, and the Internet will descend into lawless chaos,” wrote Mel Beckman, owner of Beckman Software Engineering and a computer networking consultant in the Los Angeles area. “BackConnect’s illicit action undoubtedly injured innocent parties, so it’s not self defense, any more than shooting wildly into a crowd to stop an attacker would be self defense.”

A HISTORY OF HIJACKS

Townsend’s explanation seemed to produce more questions than answers among the NANOG crowd (read the entire “Defensive BGP Hijacking” thread here if you dare). I grew more curious to learn whether this was a pattern for BackConnect when I started looking deeper into the history of two young men who co-founded BackConnect (more on them in a bit).

To get a better picture of BackConnect’s history, I turned to BGP hijacking expert Doug Madory, director of Internet analysis at Dyn, a cloud-based Internet performance management company. Madory pulled historic BGP records for BackConnect, and sure enough a strange pattern began to emerge.

Madory was careful to caution up front that not all BGP hijacks are malicious. Indeed, my DDoS protection provider — a company called Prolexic Communications (now owned by Akamai Technologies) — practically invented the use of BGP hijacks as a DDoS mitigation method, he said.

In such a scenario, an organization under heavy DDoS attack might approach Prolexic and ask for assistance. With the customer’s permission, Prolexic would use BGP to announce to the rest of the world’s ISPs that it was now the rightful owner of the Internet addresses under attack. This would allow Prolexic to “scrub” the customer’s incoming Web traffic to drop data packets designed to knock the customer offline — and forward the legitimate traffic on to the customer’s site.

Given that BackConnect is also a DDoS mitigation company, I asked Madory how one could reasonably tell the difference between a BGP hijack that BackConnect had launched to protect a client versus one that might have been launched for other purposes — such as surreptitiously collecting intelligence on DDoS-based botnets and their owners?

Madory explained that in evaluating whether a BGP hijack is malicious or consensual, he looks at four qualities: The duration of the hijack; whether it was announced globally or just to the target ISP’s local peers; whether the hijacker took steps to obfuscate which ISP was doing the hijacking; and whether the hijacker and hijacked agreed upon the action.

bcbgp

For starters, malicious BGP attacks designed to gather information about an attacking host are likely to be very brief — often lasting just a few minutes. The brevity of such hijacks makes them somewhat ineffective at mitigating large-scale DDoS attacks, which often last for hours at a time. For example, the BGP hijack that BackConnect launched against Verdina lasted a fraction of an hour, and according to the company’s CEO was launched only after the DDoS attack subsided.

Second, if the party conducting the hijack is doing so for information gathering purposes, that party may attempt to limit the number ISPs that receive the new routing instructions. This might help an uninvited BGP hijacker achieve the end result of intercepting traffic to and from the target network without informing all of the world’s ISPs simultaneously.

“If a sizable portion of the Internet’s routers do not carry a route to a DDoS mitigation provider, then they won’t be sending DDoS traffic destined for the corresponding address space to the provider’s traffic scrubbing centers, thus limiting the efficacy of any mitigation,” Madory wrote in his own blog post about our joint investigation.

Thirdly, a BGP hijacker who is trying not to draw attention to himself can “forge” the BGP records so that it appears that the hijack was performed by another party. Madory said this forgery process often fools less experienced investigators, but that ultimately it is impossible to hide the true origin of forged BGP records.

Finally, in BGP hijacks that are consensual for DDoS mitigation purposes, the host under attack stops “announcing” to the world’s ISPs that it is the rightful owner of an address block under siege at about the same time the DDoS mitigation provider begins claiming it. When we see BGP hijacks in which both parties are claiming in the BGP records to be authoritative for a given swath of Internet addresses, Madory said, it’s less likely that the BGP hijack is consensual.

Madory and KrebsOnSecurity spent several days reviewing historic records of BGP hijacks attributed to BackConnect over the past year, and at least three besides the admitted hijack against Verdina strongly suggest that the company has engaged in this type of intel-gathering activity previously. The strongest indicator of a malicious and non-consensual BGP hijack, Madory said, were the ones that included forged BGP records.

Working together, Madory and KrebsOnSecurity identified at least 17 incidents during that time frame that were possible BGP hijacks conducted by BackConnect. Of those, five included forged BGP records. One was an hours-long hijack against Ghostnet[dot]de, a hosting provider in Germany.

Two other BGP hijacks from BackConnect that included spoofed records were against Staminus Communications, a competing DDoS mitigation provider and a firm that employed BackConnect CEO Townsend for three years as senior vice president of business development until his departure from Staminus in December 2015.

“This hijack wasn’t conducted by Staminus. It was BackConnect posing as Staminus,” Dyn’s Madory concluded.

Two weeks after BackConnect hijacked the Staminus routes, Staminus was massively hacked. Unknown attackers, operating under the banner “Fuck ‘Em All,” reset all of the configurations on the company’s Internet routers, and then posted online Staminus’s customer credentials, support tickets, credit card numbers and other sensitive data. The intruders also posted to Pastebin a taunting note ridiculing the company’s security practices.

BackConnect's apparent hijack of address space owned by Staminus Communications on Feb. 20, 2016. Image: Dyn.

BackConnect’s apparent hijack of address space owned by Staminus Communications on Feb. 20, 2016. Image: Dyn.

POINTING FINGERS

I asked Townsend to comment on the BGP hijacks identified by KrebsOnSecurity and Dyn as having spoofed source information. Townsend replied that he could not provide any insight as to why these incidents occurred, noting that he and the company’s chief technology officer — 24-year-old Marshal Webb — only had access and visibility into the network after the company BackConnect Inc. was created on April 27, 2016.

According to Townsend, the current BackConnect Inc. is wholly separate from BackConnect Security LLC, which is a company started in 2014 by two young men: Webb and a 19-year-old security professional named Tucker Preston. In April 2016, Preston was voted out of the company by Webb and Townsend and forced to sell his share of the company, which was subsequently renamed BackConnect Inc.

“Before that, the original owner of BackConnect Security LLC was the only one that had the ability to access servers and perform any type of networking commands,” he explained. “We had never noticed these occurred until this last Saturday and the previous owner never communicated anything regarding these hijacks. Wish I could provide more insight, but Marshal and I do not know the reasons behind the previous owners decision to hijack those ranges or what he was trying to accomplish.”

In a phone interview, Preston told KrebsOnSecurity that Townsend had little to no understanding about the technical side of the business, and was merely “a sales guy” for BackConnect. He claims that Webb absolutely had and still has the ability to manipulate BackConnect’s BGP records and announcements.

Townsend countered that Preston was the only network engineer at the company.

“We had to self-learn how to do anything network related once the new company was founded and Tucker removed,” he said. “Marshal and myself didn’t even know how to use BGP until we were forced to learn it in order to bring on new clients. To clarify further, Marshal did not have a networking background and had only been working on our web panel and DDoS mitigation rules.”

L33T, LULZ, W00W00 AND CHIPPY

Preston said he first met Webb in 2013 after the latter admitted to launching DDoS attacks against one of Preston’s customers at the time. Webb had been painted with a somewhat sketchy recent history at the time — being fingered as a low-skilled hacker who went by the nicknames “m_nerva” and “Chippy1337.”

Webb, whose Facebook alias is “lulznet,” was publicly accused in 2011 by the hacker group LulzSec of snitching on the activities of the group to the FBI, claiming that information he shared with law enforcement led to the arrest of a teen hacker in England associated with LulzSec. Webb has publicly denied being an informant for the FBI, but did not respond to requests for comment on this story.

LulzSec members claimed that Webb was behind the hacking of the Web site for the video game “Deus Ex.” As KrebsOnSecurity noted in a story about the Deus Ex hack, the intruder defaced the gaming site with the message “Owned by Chippy1337.”

The defacement message left on deusex.com.

The defacement message left on deusex.com.

I was introduced to Webb at the Defcon hacking convention in Las Vegas in 2014. Since then, I have come to know him a bit more as a participant of w00w00, an invite-only Slack chat channel populated mainly by information security professionals who work in the DDoS mitigation business. Webb chose the handle Chippy1337 for his account in that Slack channel.

At the time, Webb was trying to convince me to take another look at Voxility, a hosting provider that I’ve previously noted has a rather checkered history and one that BackConnect appears to rely upon exclusively for its own hosting.

In our examination of BGP hijacks attributed to BackConnect, Dyn and KrebsOnSecurity identified an unusual incident in late July 2016 in which BackConnect could be seen hijacking an address range previously announced by Datawagon, a hosting provider with a rather dodgy reputation for hosting spammers and DDoS-for-hire sites.

That address range previously announced by Datawagon included the Internet address 1.3.3.7, which is hacker “leet speak” for the word “leet,” or “elite.” Interestingly, on the w00w00 DDoS discussion Slack channel I observed Webb (Chippy1337) offering other participants in the channel vanity addresses and virtual private connections (VPNs) ending in 1.3.3.7. In the screen shot below, Webb can be seen posting a screen shot demonstrating his access to the 1.3.3.7 address while logged into it on his mobile phone.

Webb, logged into the w00w00 DDoS discussion channel using his nickname "chippy1337," demonstrating that his mobile phone connection was being routed through the Internet address 1.3.3.7, which BackConnect BGP hijacked in July 2016.

Webb, logged into the w00w00 DDoS discussion channel using his nickname “chippy1337,” demonstrating that his mobile phone connection was being routed through the Internet address 1.3.3.7, which BackConnect BGP hijacked in July 2016.

THE MONEY TEAM

The Web address 1.3.3.7 currently does not respond to browser requests, but it previously routed to a page listing the core members of a hacker group calling itself the Money Team. Other sites also previously tied to that Internet address include numerous DDoS-for-hire services, such as nazistresser[dot]biz, exostress[dot]in, scriptkiddie[dot]eu, packeting[dot]eu, leet[dot]hu, booter[dot]in, vivostresser[dot]com, shockingbooter[dot]com and xboot[dot]info, among others.

The Money Team comprised a group of online gaming enthusiasts of the massively popular game Counterstrike, and the group’s members specialized in selling cheats and hacks for the game, as well as various booter services that could be used to knock rival gamers offline.

Datawagon’s founder is an 18-year-old American named CJ Sculti whose 15-minutes of fame came last year in a cybersquatting dispute after he registered the domain dominos.pizza. A cached version of the Money Team’s home page saved by Archive.org lists CJ at the top of the member list, with “chippy1337” as the third member from the top.

The MoneyTeam's roster as of November 2015. Image: Archive.org.

The MoneyTeam’s roster as of November 2015. Image: Archive.org.

Asked why he chose to start a DDoS mitigation company with a kid who was into DDoS attacks, Preston said he got to know Webb over several years before teaming up with him to form BackConnect LLC.

“We were friends long before we ever started the company together,” Preston said. “I thought Marshal had turned over a new leaf and had moved away from all that black hat stuff. He seem to stay true to that until we split and he started getting involved with the Datawagon guys. I guess his lulz mentality came back in a really stupid way.”

Townsend said Webb was never an FBI informant, and was never arrested for involvement with LulzSec.

“Only a search warrant was executed at his residence,” Townsend said. “Chippy is not a unique handle to Marshal and it has been used by many people. Just because he uses that handle today doesn’t mean any past chippy actions are his doing. Marshal did not even go by Chippy when LulzSec was in the news. These claims are completely fabricated.”

As for the apparent Datawagon hijack, Townsend said Datawagon gave BackConnect permission to announce the company’s Internet address space but later decided not to become a customer.

“They were going to be a client and they gave us permission to announce that IP range via an LOA [letter of authorization]. They did not become a client and we removed the announcement. Also note that the date of the screen shot you present of Marshal talking about the 1.3.3.7. is not even the same as when we announced Datawagons IPs.”

SOMETHING SMELLS BAD

When vDOS was hacked, its entire user database was leaked to this author. Among the more active users of vDOS in 2016 was a user who went by the username “pp412” and who registered in February 2016 using the email address mn@gnu.so.

The information about who originally registered the gnu.so domain has long been hidden behind WHOIS privacy records. But for several months in 2015 and 2016 the registration records show it was registered to a Tucker Preston LLC. Preston denies that he ever registered the gnu.so domain, and claims that he never conducted any booter attacks via vDOS. However, Preston also was on the w00w00 Slack channel along with Webb, and registered there using the email address tucker@gnu.so.

But whoever owned that pp412 account at vDOS was active in attacking a large number of targets, including multiple assaults on networks belonging to the Free Software Foundation (FSF).

Logs from the hacked vDOS attack database show the user pp4l2 attacked the Free Software Foundation in May 2016.

Logs from the hacked vDOS attack database show the user pp4l2 attacked the Free Software Foundation in May 2016.

Lisa Marie Maginnis, until very recently a senior system administrator at the FSF, said the foundation began evaluating DDoS mitigation providers in the months leading up to its LibrePlanet2016 conference in the third week of March. The organization had never suffered any real DDoS attacks to speak of previously, but NSA whistleblower Edward Snowden was slated to speak at the conference, and the FSF was concerned that someone might launch a DDoS attack to disrupt the streaming of Snowden’s keynote.

“We were worried this might bring us some extra unwanted attention,” she said.

Maginnis said the FSF had looked at BackConnect and other providers, but that it ultimately decided it didn’t have time to do the testing and evaluation required to properly vet a provider prior to the conference. So the organization tabled that decision. As it happened, the Snowden keynote was a success, and the FSF’s fears of a massive DDoS never materialized.

But all that changed in the weeks following the conference.

“The first attack we got started off kind of small, and it came around 3:30 on a Friday morning,” Maginnis recalled. “The next Friday at about the same time we were hit again, and then the next and the next.”

The DDoS attacks grew bigger with each passing week, she said, peaking at more than 200 Gbps — more than enough to knock large hosting providers offline, let alone individual sites like the FSF’s. When the FSF’s Internet provider succeeded in blacklisting the addresses doing the attacking, the attackers switched targets and began going after larger-scale ISPs further upstream.

“That’s when our ISP told us we had to do something because the attacks were really starting to impact the ISP’s other customers,” Maginnis said. “Routing all of our traffic through another company wasn’t exactly an ideal situation for the FSF, but the other choice was we would just be disconnected and there would be no more FSF online.”

In August, the FSF announced that it had signed up with BackConnect to be protected from DDoS attacks, in part because the foundation only uses free software to perform its work, and BackConnect advertises “open source DDoS protection and security,” and it agreed to provide the service without charge.

The FSF declined to comment for this story. Maginnis said she can’t be sure whether the foundation will continue to work with BackConnect. But she said the timing of the attacks is suspicious.

“The whole thing just smells bad,” she said. “It does feel like there could be a connection between the DDoS and BackConnect’s timing to approach clients. On the other hand, I don’t think we received a single attack until Tucker [Preston] left BackConnect.”

DDoS attacks are rapidly growing in size, sophistication and disruptive impact, presenting a clear and present threat to online commerce and free speech alike. Since reporting about the hack of vDOS and the arrest of its proprietors nearly two weeks ago, KrebsOnSecurity.com has been under near-constant DDoS attack. One assault this past Sunday morning maxed out at more than 210 Gbps — the largest assault on this site to date.

Addressing the root causes that contribute to these attacks is a complex challenge that requires cooperation, courage and ingenuity from a broad array of constituencies — including ISPs, hosting providers, policy and hardware makers, and even end users.

In the meantime, some worry that as the disruption and chaos caused by DDoS attacks continues to worsen, network owners and providers may be increasingly tempted to take matters into their own hands and strike back at their assailants.

But this is almost never a good idea, said Rich Kulawiec, an anti-spam activist who is active on the NANOG mailing list.

“It’s tempting (and even trendy these days in portions of the security world which advocate striking back at putative attackers, never mind that attack attribution is almost entirely an unsolved problem in computing),” Kulawiec wrote. “It’s emotionally satisfying. It’s sometimes momentarily effective. But all it really does [is] open up still more attack vectors and accelerate the spiral to the bottom.”

KrebsOnSecurity would like to thank Dyn and Doug Madory for their assistance in researching the technical side of this story. For a deep dive into the BGP activity attributed to BackConnect, check out Madory’s post, BackConnect’s Suspicious Hijacks.

Source: krebsonsecurity

Two young Israeli men alleged to be the co-owners of a popular online attack-for-hire service were reportedly arrested in Israel on Thursday. The pair were arrested around the same time that KrebsOnSecurity published a story naming them as the masterminds behind a service that can be hired to knock Web sites and Internet users offline with powerful blasts of junk data.

Alleged vDOS co-owner Yarden Bidani.

Alleged vDOS co-owner Yarden Bidani.

According to a story at Israeli news site TheMarker.comItay Huri and Yarden Bidani, both 18 years old, were arrested Thursday in connection with an investigation by the U.S. Federal Bureau of Investigation (FBI).

The pair were reportedly questioned and released Friday on the equivalent of about USD $10,000 bond each. Israeli authorities also seized their passports, placed them under house arrest for 10 days, and forbade them from using the Internet or telecommunications equipment of any kind for 30 days.

Huri and Bidani are suspected of running an attack service called vDOS. As I described in this week’s story, vDOS is a “booter” service that has earned in excess of $600,000 over the past two years helping customers coordinate more than 150,000 so-called distributed denial-of-service (DDoS) attacks designed to knock Web sites offline.

The two men’s identities were exposed because vDOS got massively hacked, spilling secrets about tens of thousands of paying customers and their targets. A copy of that database was obtained by KrebsOnSecurity.

For most of Friday, KrebsOnSecurity came under a heavy and sustained denial-of-service attack, which spiked at almost 140 Gbps. A single message was buried in each attack packet: “godiefaggot.” For a brief time the site was unavailable, but thankfully it is guarded by DDoS protection firm Prolexic/Akamai. The attacks against this site are ongoing.

Huri and Bidani were fairly open about their activities, or at least not terribly careful to cover their tracks. Yarden’s now abandoned Facebook page contains several messages from friends who refer to him by his hacker nickname “AppleJ4ck” and discuss DDoS activities. vDOS’s customer support system was configured to send a text message to Huri’s phone number in Israel — the same phone number that was listed in the Web site registration records for the domain v-email[dot]org, a domain the proprietors used to help manage the site.

At the end of August 2016, Huri and Bidani authored a technical paper (PDF) on DDoS attack methods which was published in the Israeli security e-zine Digital Whisper. In it, Huri signs his real name and says he is 18 years old and about to be drafted into the Israel Defense Forces. Bidani co-authored the paper under the alias “Raziel.b7@gmail.com,” an email address that I pointed out in my previous reporting was assigned to one of the administrators of vDOS.

Sometime on Friday, vDOS went offline. It is currently unreachable. Before it went offline, vDOS was supported by at least four servers hosted in Bulgaria at a provider called Verdina.net (the Internet address of those servers was 82.118.233.144). But according to several automated Twitter feeds that track suspicious large-scale changes to the global Internet routing tables, sometime in the last 24 hours vDOS was apparently the victim of what’s known as a BGP hijack. (Update: For some unknown reason, some of the tweets referenced above from BGPstream were deleted; I’ve archived them in this PDF).

BGP hijacking involves one ISP fraudulently “announcing” to the rest of the world’s ISPs that it is in fact the rightful custodian of a range of Internet addresses that it doesn’t actually have the right to control. It is a hack most often associated with spamming activity. According to those Twitter feeds, vDOS’s Internet addresses were hijacked by a firm called BackConnect Security.

Reached by phone, Bryant Townsend, founder and CEO of BackConnect Security, confirmed that his company did in fact hijack Verdina/vDOS’s Internet address space. Townsend said the company took the extreme measure in an effort to get out from under a massive attack launched on the company’s network Thursday, and that the company received an email directly from vDOS claiming credit for the attack.

“For about six hours, we were seeing attacks of more than 200 Gbps hitting us,” Townsend explained. “What we were doing was for defensive purposes. We were simply trying to get them to stop and to gather as much information as possible about the botnet they were using and report that to the proper authorities.”

I noted earlier this week that I would be writing more about the victims of vDOS. That story will have to wait for a few more days, but Friday evening CloudFlare (another DDoS protection service that vDOS was actually hiding behind) agreed to host the rather large log file listing roughly four months of vDOS attack logs from April through July 2016.

For some reason the attack logs only go back four months, probably because they were wiped at one point. But vDOS has been in operation since Sept. 2012, so this is likely a very small subset of the attacks this DDoS-for-hire service has perpetrated.

The file lists the vDOS username that ordered and paid for the attack; the target Internet address; the method of attack; the Internet address of the vDOS user at the time; the date and time the attack was executed; and the browser user agent string of the vDOS user.

A few lines from the vDOS attack logs.

A few lines from the vDOS attack logs.

Source: krebsonsecurity