As StarHub, one of the three major telcos in Singapore, confirmed that they were the latest victim of “intentional and likely malicious distributed denial-of-service attacks” on their DNS system, Dyn has published a short post-mortem of the unprecedented DDoS attacks it suffered on Friday (October 21, 2016). The Dyn DDoS attacks Scott Hilton, EVP of Product at Dyn, confirmed that a Mirai botnet was the primary source of the malicious attack traffic. But the initial … More
Source: helpnetsecurity

It may soon become easier for Internet service providers to anticipate and block certain types of online assaults launched by Web-based attack-for-hire services known as “booter” or “stresser” services, new research released today suggests.

The findings come from researchers in Germany who’ve been studying patterns that emerge when miscreants attempt to mass-scan the entire Internet looking for systems useful for launching these digital sieges — known as “distributed denial-of-service” or DDoS attacks.

ddosbomb

To understand the significance of their research, it may help to briefly examine how DDoS attacks have evolved. Not long ago, if one wanted to take down large Web site, one had to build and maintain a large robot network, or “botnet,” of hacked computers — which is a fairly time intensive, risky and technical endeavor.

These days, however, even the least sophisticated Internet user can launch relatively large DDoS attacks just by paying a few bucks for a subscription to one of dozens of booter or stresser services, some of which even accept credit cards and PayPal payments.

These Web-based DDoS-for-hire services don’t run on botnets: They generally employ a handful of powerful servers that are rented from some dodgy “bulletproof” hosting provider. The booter service accepts payment and attack instructions via a front end Web site that is hidden behind Cloudflare (a free DDoS protection service).

But the back end of the booter service is where the really interesting stuff happens. Virtually all of the most powerful and effective attack types used by booter services rely on a technique called traffic amplification and reflection, in which the attacker can reflect or “spoof” his traffic from one or more third-party machines toward the intended target.

In this type of assault, the attacker sends a message to a third party, while spoofing the Internet address of the victim. When the third party replies to the message, the reply is sent to the victim — and the reply is much larger than the original message, thereby amplifying the size of the attack.

To find vulnerable systems that can be leveraged this way, booters employ large-scale Internet scanning services that constantly seek to refresh the list of systems that can be used for amplification and reflection attacks. They do this because, as research has shown (PDF), anywhere from 40-50 percent of the amplifiers vanish or are reassigned new Internet addresses after one week.

Enter researchers from Saarland University in Germany, as well as the Yokohama National University and National Institute of Information and Communications Technology — both in Japan. In a years-long project first detailed in 2015, the researchers looked for scanning that appeared to be kicked off by ne’er-do-wells running booter services.

To accomplish this, the research team built a kind of distributed “honeypot” system — which they dubbed “AmpPot” — designed to mimic services known to be vulnerable to amplification attacks, such as DNS and NTP floods.

“To make them attractive to attackers, our honeypots send back legitimate responses,” the researchers wrote in a 2015 paper (PDF). “Attackers, in turn, will abuse these honeypots as amplifiers, which allows us to observe ongoing attacks, their victims, and the DDoS techniques. To prevent damage caused by our honeypots, we limit the response rate. This way, while attackers can still find these ratelimited honeypots, the honeypots stop replying in the face of attacks.”

In that 2015 paper, the researchers said they deployed 21 globally-distributed AmpPot instances, which observed more than 1.5 million attacks between February and May 2015. Analyzing the attacks more closely, they found that more than 96% of the attacks stem from single sources, such as booter services.

“When focusing on amplification DDoS attacks, we find that almost all of them (>96%) are caused by single sources (e.g. booters), and not botnets,” the team concluded. “However, we sadly do not have the numbers to compare this [to] DoS attacks in general.”

Many large-scale Internet scans like the ones the researchers sought to measure are launched by security firms and other researchers, so the team needed a way to differentiate between scans launched by booter services and those conducted for research or other benign purposes.

“To distinguish between scans performed by researchers and scans performed with malicious intent we relied on a simple assumption: That no attack would be based on the results of a scan performed by (ethical) researchers,” said Johannes Krupp, one of the main authors of the report. “In fact, thanks to our methodology, we do not have to make this distinction upfront, but we can rather look at the results and say: ‘We found attacks linked to this scanner, therefore this scanner must have been malicious.’ If a scan was truly performed by benign parties, we will not find attacks linked to it.”

SECRET IDENTIFIERS

What’s new in the paper being released today by students at Saarland University’s Center for IT-Security, Privacy and Accountability (CISPA) is the method by which the researchers were able to link these mass-scans to the very amplification attacks that follow soon after.

The researchers worked out a way to encode a secret identifier into the set of AmpPot honeypots that any subsequent attack will use, which varies per scan source. They then tested to see if the scan infrastructure was also used to actually launch (and not just to prepare) the attacks.

Their scheme was based in part on the idea that similar traffic sources should have to travel similar Internet distances to reach the globally-distributed AmpPot sensors. To do this, they looked at the number of “hops” or Internet network segments that each scan and attack had to traverse.

Using trilateration –the process of determining absolute or relative locations of points by measurement of distances — the research team was able to link scanners to attack origins based on hop counts.

These methods revealed some 286 scanners that are used by booter services in preparation for launching amplification attacks. Further, they discovered that roughly 75 percent of those scanners are located in the United States.

The researchers say they were able to confirm that many of the same networks that host scanners are also being used to launch the attacks. More significantly, they were able to attribute approximately one-third of the attacks back to their origin.

“This is an impressive result, given that the spoofed source of amplification attacks usually remains hidden,” said Christian Rossow of Saarland University.

Rosso said the team hopes to conduct further research on their methods to more definitively tie scanning and attack activity to specific booter services by name. The group is already offering a service to hosting providers and ISPs to share information about incidents (such as attack start and end times). Providers can then use the attack information to inform their customers or to filter attack traffic.

“We have shared our findings with law enforcement agencies — in particular, Europol and the FBI — and a closed circle of tier-1 network providers that use our insights on an operational basis,” the researchers wrote. “Our output can be used as forensic evidence both in legal complaints and in ways to add social pressure against spoofing sources.”

ANALYSIS

Even if these newly-described discovery methods were broadly deployed today, it’s unlikely that booter services would be going away anytime soon. But this research certainly holds the promise that booter service owners will be able to hide the true location of their operations less successfully going forward. and that perhaps more of them will be held accountable for their crimes.

Efforts by other researchers have made it more difficult for booter and stresser services to accept PayPal payments, forcing more booters to rely more on Bitcoin.

Also, there are a number of initiatives that seek to identify a handful of booter services which resell their infrastructure to other services who brand and market them as their own. Case in point, in September 2016 I published an expose on vDOS, a booter service that earned (conservatively) $600,000 over two years helping to launch more than 150,000 DDoS attacks.

Turns out, vDOS’s infrastructure was used by more than a half-dozen other booter services, and shortly after vDOS was taken offline most of those services went dark or were dismantled as well.

One major shift that could help to lessen the appeal of booter services — both for the profit-seeking booter proprietors and their customers — is a clear sign from law enforcement officials that this activity is in fact illegal and punishable by real jail time. So far, many booter service owners have been operating under the delusion or rationalization that their services are intended solely for Web site owners to test the ability of their sites to withstand data deluges. The recent arrest of two alleged Lizard Squad members who resold vDOS services through their own “PoodleStresser” service is a good start.

Many booter operators apparently believe (or at least hide behind) a wordy “terms of service” agreement that all customers must acknowledge somehow absolves them of any sort of liability for how their customers use the service — regardless of how much hand-holding and technical support they offer those customers.

Indeed, the proprietors of vDOS — who were arrested shortly after my story about them — told the Wall Street Journal through their attorneys that, “If I was to buy a gun and shoot something, is the person that invents the gun guilty?”

The alleged proprietors of vDOS — 18-year-old Israelis Yarden Bidani and Itay Huri — were released from house arrest roughly ten days after their initial arrest. To date, no charges have been filed against either men, but I have reason to believe that may not be the case for long.

Meanwhile, changes may be afoot for booter services advertised at Hackforums[dot]net, probably the biggest open-air online marketplace where booter services are advertised, compared and rated (hat tip to @MalwareTechblog). Earlier this week, Hackforums administrator Jesse “Omniscient” LaBrocca began restricting access to its “stressers” subsection of the sprawling forum, and barring forum members from advertising booter services in their user profiles.

“I can absolutely see a day when it’s removed entirely,” LaBrocca said in a post explaining his actions. “Could be very soon too.”

bbbooters

Hackforums administrator Jesse “Omniscient” LaBrocca explaining a decision to restrict access to the “stressers” portion of the Hackforums marketplace.

My worry is that we may soon see a pendulum shift in the way that many booter services operate. For now, the size of attacks launched by booter services is somewhat dependent on the number and power of the back-end servers used to initiate amplification and reflection attacks.

However, I could see a day in the not-too-distant future in which booter service operators start earning most of their money by reselling far more powerful attacks launched by actual botnets made from large networks of hacked Internet of Things (IoT) devices — such as poorly-secured CCTV cameras and digital video recorders (DVRs).

In some ways this has already happened, as I detailed in my January 2015 story, Lizard Stresser Runs on Hacked Home Routers. But with the now public release of the source code for the Mirai botnet — the same malware strain that was used in the record 620 Gbps DDoS on my site last month and in the widespread Internet outage last week caused by an attack against infrastructure provider Dyn — far more powerful and scalable attacks are now available for resale.

A copy of the paper released today at the ACM CSS conference in Vienna is available here (PDF).

Source: krebsonsecurity

On October 21, New Hampshire-based Internet performance management company Dyn suffered the largest DDoS attack ever to be registered. The attacks – there were three, in relatively quick succession, but the last one was easily mitigated – were aimed at the company’s managed DNS infrastructure. They resulted in the temporary inaccessibility of many websites and online services such as Twitter, GitHub, PayPal, Etsy, and so on. What Dyn says about the attacks “At this point … More
Source: helpnetsecurity

US-based DNS provider Dyn has suffered a massive DDoS attack earlier today, and it resulted in many websites being completely or intermittently inaccessible for a few hours. According to status reports published by the company, the target of the attack was the company’s Managed DNS infrastructure, and impacted Managed DNS customers located on the East Coast of the US. Among the websites that experienced issues as a result of the attack are Reddit, GitHub, Spotify, … More
Source: helpnetsecurity

Criminals this morning massively attacked Dyn, a company that provides core Internet services for Twitter, SoundCloud, Spotify, Reddit and a host of other sites, causing outages and slowness for many of Dyn’s customers.

Twitter is experiencing problems, as seen through the social media platform Hootsuite.

Twitter is experiencing problems, as seen through the social media platform Hootsuite.

In a statement, Dyn said that this morning, October 21, Dyn received a global distributed denial of service (DDoS) attack on its DNS infrastructure on the east coast starting at around 7:10 a.m. ET (11:10 UTC).

“DNS traffic resolved from east coast name server locations are experiencing a service interruption during this time. Updates will be posted as information becomes available,” the company wrote.

DYN encouraged customers with concerns to check the company’s status page for updates and to reach out to its technical support team.

A DDoS is when crooks use a large number of hacked or ill-configured systems to flood a target site with so much junk traffic that it can no longer serve legitimate visitors.

DNS refers to Domain Name System services. DNS is an essential component of all Web sites, responsible for translating human-friendly Web site names like “example.com” into numeric, machine-readable Internet addresses. Anytime you send an e-mail or browse a Web site, your machine is sending a DNS look-up request to your Internet service provider to help route the traffic.

ANALYSIS

The attack on DYN comes just hours after DYN researcher Doug Madory presented a talk on DDoS attacks in Dallas, Texas at a meeting of the North American Network Operators Group (NANOG). Madory’s talk — available here on Youtube.com — delved deeper into research that he and I teamed up on to produce the data behind the story DDoS Mitigation Firm Has History of Hijacks.

That story (as well as one published earlier this week, Spreading the DDoS Disease and Selling the Cure) examined the sometimes blurry lines between certain DDoS mitigation firms and the cybercriminals apparently involved in launching some of the largest DDoS attacks the Internet has ever seen. Indeed, the record 620 Gbps DDoS against KrebsOnSecurity.com came just hours after I published the story on which Madory and I collaborated.

The record-sized attack that hit my site last month was quickly superseded by a DDoS against OVH, a French hosting firm that reported being targeted by a DDoS that was roughly twice the size of the assault on KrebsOnSecurity. As I noted in The Democratization of Censorship — the first story published after bringing my site back up under the protection of Google’s Project Shield — DDoS mitigation firms simply did not count on the size of these attacks increasing so quickly overnight, and are now scrambling to secure far greater capacity to handle much larger attacks concurrently.

The size of these DDoS attacks has increased so much lately thanks largely to the broad availability of tools for compromising and leveraging the collective firepower of so-called Internet of Things devices — poorly secured Internet-based security cameras, digital video recorders (DVRs) and Internet routers. Last month, a hacker by the name of Anna_Senpai released the source code for Mirai, a crime machine that enslaves IoT devices for use in large DDoS attacks. The 620 Gbps attack that hit my site last month was launched by a botnet built on Mirai, for example.

Interestingly, someone is now targeting infrastructure providers with extortion attacks and invoking the name Anna_senpai. According to a discussion thread started Wednesday on Web Hosting Talk, criminals are now invoking the Mirai author’s nickname in a bid to extort Bitcoins from targeted hosting providers.

“If you will not pay in time, DDoS attack will start, your web-services will
go down permanently. After that, price to stop will be increased to 5 BTC
with further increment of 5 BTC for every day of attack.

NOTE, i?m not joking.

My attack are extremely powerful now – now average 700-800Gbps, sometimes over 1 Tbps per second. It will pass any remote protections, no current protection systems can help.”

Let me be clear: I have no data to indicate that the attack on Dyn is related to extortion, to Mirai or to any of the companies or individuals Madory referenced in his talk this week in Dallas. But Dyn is known for publishing detailed writeups on outages at other major Internet service providers. Here’s hoping the company does not deviate from that practice and soon publishes a postmortem on its own attack.

Update, 3:50 p.m. ET: Security firm Flashpoint is now reporting that they have seen indications that a Mirai-based botnet is indeed involved in the attack on Dyn today. Separately, I have heard from a trusted source who’s been tracking this activity and saw chatter in the cybercrime underground yesterday discussing a plan to attack Dyn.

Update, 10:22 a.m. ET: Dyn’s status page reports that all services are back to normal as of 13:20 UTC (9:20 a.m. ET). Fixed the link to Doug Madory’s talk on Youtube, to remove the URL shortener (which isn’t working because of this attack).

Update, 1:01 p.m. ET: Looks like the attacks on Dyn have resumed and this event is ongoing. This, from the Dyn status page:

This DDoS attack may also be impacting Dyn Managed DNS advanced services with possible delays in monitoring. Our Engineers are continuing to work on mitigating this issue.
Oct 21, 16:48 UTC
As of 15:52 UTC, we have begun monitoring and mitigating a DDoS attack against our Dyn Managed DNS infrastructure. Our Engineers are continuing to work on mitigating this issue.
Oct 21, 16:06 UTC

Source: krebsonsecurity

John Gilmore, an American entrepreneur and civil libertarian, once famously quipped that “the Internet interprets censorship as damage and routes around it.” This notion undoubtedly rings true for those who see national governments as the principal threats to free speech.

However, events of the past week have convinced me that one of the fastest-growing censorship threats on the Internet today comes not from nation-states, but from super-empowered individuals who have been quietly building extremely potent cyber weapons with transnational reach.

underwater

More than 20 years after Gilmore first coined that turn of phrase, his most notable quotable has effectively been inverted — “Censorship can in fact route around the Internet.” The Internet can’t route around censorship when the censorship is all-pervasive and armed with, for all practical purposes, near-infinite reach and capacity. I call this rather unwelcome and hostile development the “The Democratization of Censorship.”

Allow me to explain how I arrived at this unsettling conclusion. As many of you know, my site was taken offline for the better part of this week. The outage came in the wake of a historically large distributed denial-of-service (DDoS) attack which hurled so much junk traffic at Krebsonsecurity.com that my DDoS protection provider Akamai chose to unmoor my site from its protective harbor.

Let me be clear: I do not fault Akamai for their decision. I was a pro bono customer from the start, and Akamai and its sister company Prolexic have stood by me through countless attacks over the past four years. It just so happened that this last siege was nearly twice the size of the next-largest attack they had ever seen before. Once it became evident that the assault was beginning to cause problems for the company’s paying customers, they explained that the choice to let my site go was a business decision, pure and simple.

Nevertheless, Akamai rather abruptly informed me I had until 6 p.m. that very same day — roughly two hours later — to make arrangements for migrating off their network. My main concern at the time was making sure my hosting provider wasn’t going to bear the brunt of the attack when the shields fell. To ensure that absolutely would not happen, I asked Akamai to redirect my site to 127.0.0.1 — effectively relegating all traffic destined for KrebsOnSecurity.com into a giant black hole.

Today, I am happy to report that the site is back up — this time under Project Shield, a free program run by Google to help protect journalists from online censorship. And make no mistake, DDoS attacks — particularly those the size of the assault that hit my site this week — are uniquely effective weapons for stomping on free speech, for reasons I’ll explore in this post.

Google's Project Shield is now protecting KrebsOnSecurity.com

Google’s Project Shield is now protecting KrebsOnSecurity.com

Why do I speak of DDoS attacks as a form of censorship? Quite simply because the economics of mitigating large-scale DDoS attacks do not bode well for protecting the individual user, to say nothing of independent journalists.

In an interview with The Boston Globe, Akamai executives said the attack — if sustained — likely would have cost the company millions of dollars. In the hours and days following my site going offline, I spoke with multiple DDoS mitigation firms. One offered to host KrebsOnSecurity for two weeks at no charge, but after that they said the same kind of protection I had under Akamai would cost between $150,000 and $200,000 per year.

Ask yourself how many independent journalists could possibly afford that kind of protection money? A number of other providers offered to help, but it was clear that they did not have the muscle to be able to withstand such massive attacks.

I’ve been toying with the idea of forming a 501(c)3 non-profit organization — ‘The Center for the Defense of Internet Journalism’, if you will — to assist Internet journalists with obtaining the kind of protection they may need when they become the targets of attacks like the one that hit my site.  Maybe a Kickstarter campaign, along with donations from well-known charitable organizations, could get the ball rolling.  It’s food for thought.

CALIBRATING THE CANNONS

Earlier this month, noted cryptologist and security blogger Bruce Schneier penned an unusually alarmist column titled, “Someone Is Learning How to Take Down the Internet.” Citing unnamed sources, Schneier warned that there was strong evidence indicating that nation-state actors were actively and aggressively probing the Internet for weak spots that could allow them to bring the entire Web to a virtual standstill.

“Someone is extensively testing the core defensive capabilities of the companies that provide critical Internet services,” Schneier wrote. “Who would do this? It doesn’t seem like something an activist, criminal, or researcher would do. Profiling core infrastructure is common practice in espionage and intelligence gathering. It’s not normal for companies to do that.”

Schneier continued:

“Furthermore, the size and scale of these probes — and especially their persistence — points to state actors. It feels like a nation’s military cyber command trying to calibrate its weaponry in the case of cyberwar. It reminds me of the US’s Cold War program of flying high-altitude planes over the Soviet Union to force their air-defense systems to turn on, to map their capabilities.”

Whether Schneier’s sources were accurate in their assessment of the actors referenced in his blog post is unknown. But as my friend and mentor Roland Dobbins at Arbor Networks eloquently put it, “When it comes to DDoS attacks, nation-states are just another player.”

“Today’s reality is that DDoS attacks have become the Great Equalizer between private actors & nation-states,” Dobbins quipped.

UM…YOUR RERUNS OF ‘SEINFELD’ JUST ATTACKED ME

What exactly was it that generated the record-smashing DDoS of 620 Gbps against my site this week? Was it a space-based weapon of mass disruption built and tested by a rogue nation-state, or an arch villain like SPECTRE from the James Bond series of novels and films? If only the enemy here was that black-and-white.

No, as I reported in the last blog post before my site was unplugged, the enemy in this case was far less sexy. There is every indication that this attack was launched with the help of a botnet that has enslaved a large number of hacked so-called “Internet of Things,” (IoT) devices — mainly routers, IP cameras and digital video recorders (DVRs) that are exposed to the Internet and protected with weak or hard-coded passwords. Most of these devices are available for sale on retail store shelves for less than $100, or — in the case of routers — are shipped by ISPs to their customers.

Some readers on Twitter have asked why the attackers would have “burned” so many compromised systems with such an overwhelming force against my little site. After all, they reasoned, the attackers showed their hand in this assault, exposing the Internet addresses of a huge number of compromised devices that might otherwise be used for actual money-making cybercriminal activities, such as hosting malware or relaying spam. Surely, network providers would take that list of hacked devices and begin blocking them from launching attacks going forward, the thinking goes.

As KrebsOnSecurity reader Rob Wright commented on Twitter, “the DDoS attack on @briankrebs feels like testing the Death Star on the Millennium Falcon instead of Alderaan.” I replied that this maybe wasn’t the most apt analogy. The reality is that there are currently millions — if not tens of millions — of insecure or poorly secured IoT devices that are ripe for being enlisted in these attacks at any given time. And we’re adding millions more each year.

I suggested to Mr. Wright perhaps a better comparison was that ne’er-do-wells now have a virtually limitless supply of Stormtrooper clones that can be conscripted into an attack at a moment’s notice.

A scene from the 1978 movie Star Wars, which the Death Star tests its firepower by blowing up a planet.

A scene from the 1977 movie Star Wars, in which the Death Star tests its firepower by blowing up a planet.

SHAMING THE SPOOFERS

The problem of DDoS conscripts goes well beyond the millions of IoT devices that are shipped insecure by default: Countless hosting providers and ISPs do nothing to prevent devices on their networks from being used by miscreants to “spoof” the source of DDoS attacks.

As I noted in a November 2015 story, The Lingering Mess from Default Insecurity, one basic step that many ISPs can but are not taking to blunt these attacks involves a network security standard that was developed and released more than a dozen years ago. Known as BCP38, its use prevents insecure resources on an ISPs network (hacked servers, computers, routers, DVRs, etc.) from being leveraged in such powerful denial-of-service attacks.

Using a technique called traffic amplification and reflection, the attacker can reflect his traffic from one or more third-party machines toward the intended target. In this type of assault, the attacker sends a message to a third party, while spoofing the Internet address of the victim. When the third party replies to the message, the reply is sent to the victim — and the reply is much larger than the original message, thereby amplifying the size of the attack.

BCP38 is designed to filter such spoofed traffic, so that it never even traverses the network of an ISP that’s adopted the anti-spoofing measures. However, there are non-trivial economic reasons that many ISPs fail to adopt this best practice. This blog post from the Internet Society does a good job of explaining why many ISPs ultimately decide not to implement BCP38.

Fortunately, there are efforts afoot to gather information about which networks and ISPs have neglected to filter out spoofed traffic leaving their networks. The idea is that by “naming and shaming” the providers who aren’t doing said filtering, the Internet community might pressure some of these actors into doing the right thing (or perhaps even offer preferential treatment to those providers who do conduct this basic network hygiene).

A research experiment by the Center for Applied Internet Data Analysis (CAIDA) called the “Spoofer Project” is slowly collecting this data, but it relies on users voluntarily running CAIDA’s software client to gather that intel. Unfortunately, a huge percentage of the networks that allow spoofing are hosting providers that offer extremely low-cost, virtual private servers (VPS). And these companies will never voluntarily run CAIDA’s spoof-testing tools.

CAIDA's Spoofer Project page.

CAIDA’s Spoofer Project page.

As a result, the biggest offenders will continue to fly under the radar of public attention unless and until more pressure is applied by hardware and software makers, as well as ISPs that are doing the right thing.

How might we gain a more complete picture of which network providers aren’t blocking spoofed traffic — without relying solely on voluntary reporting? That would likely require a concerted effort by a coalition of major hardware makers, operating system manufacturers and cloud providers, including Amazon, Apple, Google, Microsoft and entities which maintain the major Web server products (Apache, Nginx, e.g.), as well as the major Linux and Unix operating systems.

The coalition could decide that they will unilaterally build such instrumentation into their products. At that point, it would become difficult for hosting providers or their myriad resellers to hide the fact that they’re allowing systems on their networks to be leveraged in large-scale DDoS attacks.

To address the threat from the mass-proliferation of hardware devices such as Internet routers, DVRs and IP cameras that ship with default-insecure settings, we probably need an industry security association, with published standards that all members adhere to and are audited against periodically.

The wholesalers and retailers of these devices might then be encouraged to shift their focus toward buying and promoting connected devices which have this industry security association seal of approval. Consumers also would need to be educated to look for that seal of approval. Something like Underwriters Laboratories (UL), but for the Internet, perhaps.

THE BLEAK VS. THE BRIGHT FUTURE

As much as I believe such efforts could help dramatically limit the firepower available to today’s attackers, I’m not holding my breath that such a coalition will materialize anytime soon. But it’s probably worth mentioning that there are several precedents for this type of cross-industry collaboration to fight global cyber threats.

In 2008, the United States Computer Emergency Readiness Team (CERT) announced that researcher Dan Kaminsky had discovered a fundamental flaw in DNS that could allow anyone to intercept and manipulate most Internet-based communications, including email and e-commerce applications. A diverse community of software and hardware makers came together to fix the vulnerability and to coordinate the disclosure and patching of the design flaw.

deathtoddosIn 2009, Microsoft heralded the formation of an industry group to collaboratively counter Conficker, a malware threat that infected tens of millions of Windows PCs and held the threat of allowing cybercriminals to amass a stupendous army of botted systems virtually overnight. A group of software and security firms, dubbed the Conficker Cabal, hashed out and executed a plan for corralling infected systems and halting the spread of Conficker.

In 2011, a diverse group of industry players and law enforcement organizations came together to eradicate the threat from the DNS Changer Trojan, a malware strain that infected millions of Microsoft Windows systems and enslaved them in a botnet that was used for large-scale cyber fraud schemes.

These examples provide useful templates for a solution to the DDoS problem going forward. What appears to be missing is any sense of urgency to address the DDoS threat on a coordinated, global scale.

That’s probably because at least for now, the criminals at the helm of these huge DDoS crime machines are content to use them to launch petty yet costly attacks against targets that suit their interests or whims.

For example, the massive 620 Gbps attack that hit my site this week was an apparent retaliation for a story I wrote exposing two Israeli men who were arrested shortly after that story ran for allegedly operating vDOS — until recently the most popular DDoS-for-hire network. The traffic hurled at my site in that massive attack included the text string “freeapplej4ck,” a reference to the hacker nickname used by one of vDOS’s alleged co-founders.

Most of the time, ne’er-do-wells like Applej4ck and others are content to use their huge DDoS armies to attack gaming sites and services. But the crooks maintaining these large crime machines haven’t just been targeting gaming sites. OVH, a major Web hosting provider based in France, said in a post on Twitter this week that it was recently the victim of an even more massive attack than hit my site. According to a Tweet from OVH founder Octave Klaba, that attack was launched by a botnet consisting of more than 145,000 compromised IP cameras and DVRs.

I don’t know what it will take to wake the larger Internet community out of its slumber to address this growing threat to free speech and ecommerce. My guess is it will take an attack that endangers human lives, shuts down critical national infrastructure systems, or disrupts national elections.

But what we’re allowing by our inaction is for individual actors to build the instrumentality of tyranny. And to be clear, these weapons can be wielded by anyone — with any motivation — who’s willing to expend a modicum of time and effort to learn the most basic principles of its operation.

The sad truth these days is that it’s a lot easier to censor the digital media on the Internet than it is to censor printed books and newspapers in the physical world. On the Internet, anyone with an axe to grind and the willingness to learn a bit about the technology can become an instant, self-appointed global censor.

I sincerely hope we can address this problem before it’s too late. And I’m deeply grateful for the overwhelming outpouring of support and solidarity that I’ve seen and heard from so many readers over the past few days. Thank you.

Source: krebsonsecurity